Fourier-Identity

The \(n \times 2 n\) Fourier-Identity matrix, say \(A\), is given by

\[A = \left[ F I \right],\]

where \(F\) is the \(n \times n\) Discrete Fourier Transform matrix, and \(I\) is the \(n \times n\) identity. It is a common example of a matrix with low coherence.

C++ API

void FourierIdentity(Matrix<Complex<Real>> &A, Int n)
void FourierIdentity(AbstractDistMatrix<Complex<Real>> &A, Int n)

C API

ElError ElFourierIdentity_c(ElMatrix_c A, ElInt n)
ElError ElFourierIdentity_z(ElMatrix_z A, ElInt n)
ElError ElFourierIdentityDist_c(ElDistMatrix_c A, ElInt n)
ElError ElFourierIdentityDist_z(ElDistMatrix_z A, ElInt n)

Python API

FourierIdentity(A, n)