Redheffer

Return the \(n \times n\) matrix with entry \((i,j)\) (counting from zero) set to

\[\begin{split}\begin{array}{ll} 1, & j = 0, \text{ or } (j+1) \bmod (i+1) = 0, \\ 0, & \text{otherwise}. \end{array}\end{split}\]

The determinants of such matrices are connected to the Riemann hypothesis, which holds if and only if

\[\text{det}(R) = O(n^{1/2+\epsilon})\]

for every \(\epsilon > 0\).

C++ API

void Redheffer(Matrix<T> &R, Int n)
void Redheffer(AbstractDistMatrix<T> &R, Int n)

C API

ElError ElRedheffer_i(ElMatrix_i R, ElInt n)
ElError ElRedheffer_s(ElMatrix_s R, ElInt n)
ElError ElRedheffer_d(ElMatrix_d R, ElInt n)
ElError ElRedheffer_c(ElMatrix_c R, ElInt n)
ElError ElRedheffer_z(ElMatrix_z R, ElInt n)
ElError ElRedhefferDist_i(ElDistMatrix_i R, ElInt n)
ElError ElRedhefferDist_s(ElDistMatrix_s R, ElInt n)
ElError ElRedhefferDist_d(ElDistMatrix_d R, ElInt n)
ElError ElRedhefferDist_c(ElDistMatrix_c R, ElInt n)
ElError ElRedhefferDist_z(ElDistMatrix_z R, ElInt n)

Python API

Redheffer(R, n)