Inertia¶
The following routines return a triplet containing the number of positive, negative, and zero eigenvalues of a Hermitian matrix by analyzing the quasi-diagonal matrix resulting from a pivoted LDLH factorization.
Python API¶
-
Inertia
(A[, uplo=LOWER[, pivType=BUNCH_KAUFMAN_A]])¶ - Parameters
A – The (sequential or distributed) dense Hermitian matrix
uplo – (optional) Which triangle of \(A\) to access
pivType – (optional) The preferred pivoting strategy
- Return type
The resulting
InertiaType
instance
C++ API¶
-
class
InertiaType
¶
-
InertiaType
Inertia
(UpperOrLower uplo, Matrix<F> &A, LDLPivotType pivotType = BUNCH_PARLETT)¶
-
InertiaType
Inertia
(UpperOrLower uplo, AbstractDistMatrix<F> &A, LDLPivotType pivotType = BUNCH_PARLETT)¶
C API¶
-
ElError
ElInertia_s
(ElUpperOrLower uplo, ElMatrix_s A, ElInertiaType* inertia)¶
-
ElError
ElInertia_d
(ElUpperOrLower uplo, ElMatrix_d A, ElInertiaType* inertia)¶
-
ElError
ElInertia_c
(ElUpperOrLower uplo, ElMatrix_c A, ElInertiaType* inertia)¶
-
ElError
ElInertia_z
(ElUpperOrLower uplo, ElMatrix_z A, ElInertiaType* inertia)¶
-
ElError
ElInertiaDist_s
(ElUpperOrLower uplo, ElDistMatrix_s A, ElInertiaType* inertia)¶
-
ElError
ElInertiaDist_d
(ElUpperOrLower uplo, ElDistMatrix_d A, ElInertiaType* inertia)¶
-
ElError
ElInertiaDist_c
(ElUpperOrLower uplo, ElDistMatrix_c A, ElInertiaType* inertia)¶
-
ElError
ElInertiaDist_z
(ElUpperOrLower uplo, ElDistMatrix_z A, ElInertiaType* inertia)¶