Demmel

An \(n \times n\) Demmel matrix is of the form

\[D(n,\beta) = (\beta J(-\beta^{-1},n))^{-1},\]

where \(J(-\beta^{-1},n)\) is the \(n \times n\) Jordan block with eigenvalue \(-\beta^{-1}\), and the standard value for \(\beta\) is \(10^{4/(n-1)}\). More explicitly, \(D(n,\beta)\) is an upper-triangular matrix where the \(j\)’th super-diagonal is equal to \(-\beta^j\).

C++ API

void Demmel(Matrix<F> &A, Int n)
void Demmel(AbstractDistMatrix<F> &A, Int n)

C API

ElError ElDemmel_s(ElMatrix_s A, ElInt n)
ElError ElDemmel_d(ElMatrix_d A, ElInt n)
ElError ElDemmel_c(ElMatrix_c A, ElInt n)
ElError ElDemmel_z(ElMatrix_z A, ElInt n)
ElError ElDemmelDist_s(ElDistMatrix_s A, ElInt n)
ElError ElDemmelDist_d(ElDistMatrix_d A, ElInt n)
ElError ElDemmelDist_c(ElDistMatrix_c A, ElInt n)
ElError ElDemmelDist_z(ElDistMatrix_z A, ElInt n)

Python API

Demmel(A, n)