Hanowa¶
A \(2n \times 2n\) matrix is said to be a Hanowa matrix if it is of the form
\[\begin{split}A = \begin{pmatrix} \mu I_{n \times n} & -D \\
D & \mu I_{n \times n} \end{pmatrix},\end{split}\]
where \(D = \text{diag}( [1,2,...,n] )\) and \(I_{n \times n}\) is the \(n \times n\) identity matrix.
C API¶
-
ElError
ElHanowa_c
(ElMatrix_c A, ElInt n, complex_float mu)¶
-
ElError
ElHanowa_z
(ElMatrix_z A, ElInt n, complex_double mu)¶
-
ElError
ElHanowaDist_c
(ElDistMatrix_c A, ElInt n, complex_float mu)¶
-
ElError
ElHanowaDist_z
(ElDistMatrix_z A, ElInt n, complex_double mu)¶