Redheffer
Return the \(n \times n\) matrix with entry \((i,j)\) (counting from
zero) set to
\[\begin{split}\begin{array}{ll}
1, & j = 0, \text{ or } (j+1) \bmod (i+1) = 0, \\
0, & \text{otherwise}.
\end{array}\end{split}\]
The determinants of such matrices are connected to the Riemann hypothesis,
which holds if and only if
\[\text{det}(R) = O(n^{1/2+\epsilon})\]
for every \(\epsilon > 0\).
C++ API
-
void
Redheffer
(Matrix<T> &R, Int n)
-
void
Redheffer
(AbstractDistMatrix<T> &R, Int n)
C API
-
ElError
ElRedheffer_i
(ElMatrix_i R, ElInt n)
-
ElError
ElRedheffer_s
(ElMatrix_s R, ElInt n)
-
ElError
ElRedheffer_d
(ElMatrix_d R, ElInt n)
-
ElError
ElRedheffer_c
(ElMatrix_c R, ElInt n)
-
ElError
ElRedheffer_z
(ElMatrix_z R, ElInt n)
-
ElError
ElRedhefferDist_i
(ElDistMatrix_i R, ElInt n)
-
ElError
ElRedhefferDist_s
(ElDistMatrix_s R, ElInt n)
-
ElError
ElRedhefferDist_d
(ElDistMatrix_d R, ElInt n)
-
ElError
ElRedhefferDist_c
(ElDistMatrix_c R, ElInt n)
-
ElError
ElRedhefferDist_z
(ElDistMatrix_z R, ElInt n)
Python API
-
Redheffer
(R, n)