Extended Kahan
The upper-triangular matrix \(A = S R\), where \(S=\text{diag}(1,\zeta,...,\zeta^{3 2^k-1})\), and
\[\begin{split}R = \begin{pmatrix} I & -\phi H_k & 0 \\
0 & I & \phi H_k \\
0 & 0 & I \end{pmatrix}.\end{split}\]
TODO: Reference for its introduction and a description of its relevance to
rank-revealing QR factorizations
C++ API
-
void
ExtendedKahan
(Matrix<F> &A, Int k, Base<F> phi, Base<F> mu)
-
void
ExtendedKahan
(ElementalMatrix<F> &A, Int k, Base<F> phi, Base<F> mu)
C API
-
ElError
ElExtendedKahan_s
(ElMatrix_s A, ElInt k, float phi, float mu)
-
ElError
ElExtendedKahan_d
(ElMatrix_d A, ElInt k, double phi, double mu)
-
ElError
ElExtendedKahan_c
(ElMatrix_c A, ElInt k, float phi, float mu)
-
ElError
ElExtendedKahan_z
(ElMatrix_z A, ElInt k, double phi, double mu)
-
ElError
ElExtendedKahanDist_s
(ElDistMatrix_s A, ElInt k, float phi, float mu)
-
ElError
ElExtendedKahanDist_d
(ElDistMatrix_d A, ElInt k, double phi, double mu)
-
ElError
ElExtendedKahanDist_c
(ElDistMatrix_c A, ElInt k, float phi, float mu)
-
ElError
ElExtendedKahanDist_z
(ElDistMatrix_z A, ElInt k, double phi, double mu)
Python API
-
ExtendedKahan
(A, k, phi, mu)